Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 844
Filtrar
1.
J Fish Dis ; 47(2): e13884, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37929301

RESUMO

The mucus layers of fish serve as the main interface between the organism and the environment. They play an important biological and ecological role. The current study focuses on Nile tilapia epidermal mucus reared under different commercial feeds (coded A and B) and environments (biofloc technology and earthen pond systems). Crude protein levels in feed A and B were 30% and 28%, respectively. Water parameters in all culturing systems were suitable for tilapia throughout the study period. The antimicrobial potency of tilapia (n = 5 from each) epidermal mucus was tested in vitro against human and fish pathogenic strains viz. Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Francisella noatunensis, and Aeromonas hydrophila. To determine the antimicrobial activity, zones of inhibition (ZOI) were measured in millimetres and compared with two antibiotics (chloramphenicol and ciprofloxacin). SDS-PAGE analysis was performed on skin mucus samples of tilapia to determine protein quantity and size (molecular weight). Results of tilapia skin mucus (crude and aqueous) revealed a strong antibacterial effect against all the selected pathogenic strains. However, variation has been observed in the mucus potency and ZOI values between the biofloc and pond tilapia mucus. The crude mucus of tilapia fed on feed A and cultured in the pond exhibited strong antibacterial effects and high ZOI values compared to the mucus of biofloc tilapia, aqueous mucus extracts and positive control chloramphenicol (antibiotic). The SDS-PAGE results showed that the high molecular weight proteins were found in the collected epidermal mucus of BFT-B (240 kDa) and EP-B (230 kDa). Several peptides in fish skin mucus may play a crucial role in the protection of fish against disease-causing pathogens. Thus, it can be utilized in the human and veterinary sectors as an 'antimicrobial' for treating various bacterial infections.


Assuntos
Anti-Infecciosos , Ciclídeos , Doenças dos Peixes , Tilápia , Animais , Ração Animal/análise , Antibacterianos/farmacologia , Aquicultura/métodos , Cloranfenicol/análise , Dieta/veterinária , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia , Muco/química , Lagoas , Tilápia/microbiologia
2.
Int J Biol Macromol ; 258(Pt 1): 128878, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141709

RESUMO

Snail mucus had medical applications for wound healing as early as ancient Greece and the late Han Dynasty (China). A literature search found 165 modern research papers discussing the extraction methods, chemical compositions, pharmacological activities, and applications of snail mucus. Thus, this review summarized the research progress on the extraction, structure, pharmacological activities, and applications of polysaccharides and proteins isolated from snail mucus. The extraction methods of snail mucus include natural secretion and stimulation with blunt force, spray, electricity, un-shelling, ultrasonic-assisted, and ozone-assisted. As a natural product, snail mucus mainly comprises two polysaccharides (glycosaminoglycan, dextran), seven glycoproteins (mucin, lectin), various antibacterial peptides, allantoin, glycolic acid, etc. It has pharmacological activities that encourage cell migration and proliferation, and promote angiogenesis and have antibacterial, anti-oxidative and anticancer properties. The mechanism of snail mucus' chemicals performing antibacterial and wound-healing was proposed. Snail mucus is a promising bioactive product with multiple medical applications and has great potential in the pharmaceutical and healthcare industries. Therefore, this review provides a valuable reference for researching and developing snail mucus.


Assuntos
Antibacterianos , Polissacarídeos , Polissacarídeos/química , Antibacterianos/farmacologia , Muco/química , Lectinas/metabolismo , Glicosaminoglicanos/metabolismo
3.
Biomacromolecules ; 25(1): 400-412, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38124283

RESUMO

Airway mucus works as a protective barrier in the human body, as it entraps pathogens that will be later cleared from the airways by ciliary transport or by coughing, thus featuring the rheological properties of a highly stretchable gel. Nonetheless, the study of these physical barrier as well as transport properties remains limited due to the restricted and invasive access to lungs and bronchi to retrieve mucus and to the poor repeatability inherent to native mucus samples. To overcome these limits, we report on a biobased synthetic mucus prepared from snail slime and multibranched thiol cross-linker, which are able to establish disulfide bonds, in analogy with the disulfide bonding of mucins, and therefore build viscoelastoplastic hydrogels. The gel macroscopic properties are tuned by modifying the cross-linker and slime concentrations and can quantitatively match those of native sputum from donors with cystic fibrosis (CF) or non-cystic fibrosis bronchiectasis (NCFB) both in the small- and large-deformation regimes. Heterogeneous regimes were locally found in the mucus model by passive microrheology, in which both diffusive and non-diffusive motion are present, similar to what is observed in sputa. The biobased synthetic approach proposed in the present study thus allows to produce, with commercially available components, a promising model to native respiratory mucus regarding both mechanical and, to a lesser extent, physicochemical aspects.


Assuntos
Fibrose Cística , Gastrópodes , Animais , Humanos , Muco/química , Escarro , Dissulfetos
4.
J Steroid Biochem Mol Biol ; 234: 106401, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734670

RESUMO

As a stress hormone, cortisol and more recently its metabolites are analysed when assessing fish stress and welfare status, although the exact identity of these metabolites is not clearly defined for the Atlantic salmon. LC-MS/MS techniques, owing to their specificity, sensitivity and ability to simultaneously identify and measure several relevant compounds, can be useful tools for this purpose. Using the guidelines provided by the European Decision no. 657/2002/EC for validation, the LC-MS/MS method presented here, can reliably identify and quantify cortisol and five of its metabolites (5ß-THF, cortisone, 5ß-DHE, 5ß-THE and ß-cortolone) in bile and faeces, and cortisol and cortisone in skin mucus and blood plasma of farmed Atlantic salmon within 15 min. Identified as the most predominant compound in faeces and bile, 5ß-THE is proposed as a candidate stress biomarker when using these matrices. A decision limit (CCα) below 5 ng/mL, a detection capability (CCß) and a limit of detection (LOD) below 10 ng/mL and a limit of quantitation (LOQ) below 30 ng/mL were typically obtained for most of the compounds. The concentrations of these compounds measured in either non-stressed or stressed fish were all above the CCα, CCß, LOD and the LOQ of the method. The latter consequently demonstrated significant difference in cortisol metabolites concentrations between the two groups of fish. The present study further demonstrates that pooling of samples from several individuals could provide reliable results for farmed fish stress evaluation, when sample materials are insufficient in terms of quantity.


Assuntos
Cortisona , Salmo salar , Animais , Hidrocortisona , Cromatografia Líquida/métodos , Salmo salar/metabolismo , Cortisona/metabolismo , Bile/metabolismo , Espectrometria de Massas em Tandem/métodos , Fezes/química , Muco/química , Muco/metabolismo , Plasma/química , Plasma/metabolismo
5.
Expert Opin Drug Deliv ; 20(10): 1371-1385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37498079

RESUMO

INTRODUCTION: Oral administration is the most common route for treating colonic diseases that present increased incidences in recent years. Colonic mucus is a critical rate-limiting barrier for the accumulation of oral therapeutics in the colonic tissues. To overcome this obstacle, mucus-penetrating nanotherapeutics have been exploited to increase the accumulated amounts of drugs in the diseased sites and improve their treatment outcomes against colonic diseases. AREAS COVERED: In this review, we introduce the structure and composition of colonic mucus as well as its impact on the bioavailability of oral drugs. We also introduce various technologies used in the construction of mucus-penetrating nanomedicines (e.g. surface modification of polymers, physical means and biological strategies) and discuss their mechanisms and potential techniques for improving mucus penetration of nanotherapeutics. EXPERT OPINION: The mucus barrier is often overlooked in oral drug delivery. The weak mucus permeability of conventional medications greatly lowers drug bioavailability. This challenge can be addressed through physical, chemical and biological technologies. In addition to the reported methods, promising approaches may be discovered through interdisciplinary research that further helps enhance the mucus penetration of nanomedicines.


Assuntos
Doenças do Colo , Nanopartículas , Humanos , Nanopartículas/química , Nanomedicina , Sistemas de Liberação de Medicamentos/métodos , Administração Oral , Muco/química
6.
J Control Release ; 360: 831-841, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37481213

RESUMO

Intestinal mucus is a complex natural hydrogel barrier with unique physical properties that impede the absorption of various oral drugs. Both washout from the upper water layer and the physical resistance of the mucus layer particularly affect bioavailability of, especially, highly water-soluble molecules. One potential strategy for designing pharmaceutical formulations is to add absorption enhancers (AEs). However, there are few reports of AEs that work on mucus and their underlying mechanisms, leading to imprecise application. In this study, we investigated chitooligosaccharide (COS) as a safe, low-cost, and effective oral drug AE. We revealed the hydrodynamic law of interaction between COS and the intestinal mucus layer, which was associated with absorption benefiting mucus structural reconstruction. Based on this, we designed a translational strategy to improve the bioavailability of a group of soluble oral drugs by drinking COS solution before administration. Moreover, this research is expected to expand its application scenario by reducing drug dosage such as avoiding gastro-intestinal irritation and slowing veterinary antibiotic resistance.


Assuntos
Absorção Intestinal , Água , Preparações Farmacêuticas/química , Água/metabolismo , Muco/química , Administração Oral , Mucosa Intestinal/metabolismo
7.
Mar Drugs ; 21(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37367675

RESUMO

The slow discovery of new antibiotics combined with the alarming emergence of antibiotic-resistant bacteria underscores the need for alternative treatments. In this regard, fish skin mucus has been demonstrated to contain a diverse array of bioactive molecules with antimicrobial properties, including peptides, proteins, and other metabolites. This review aims to provide an overview of the antimicrobial molecules found in fish skin mucus and its reported in vitro antimicrobial capacity against bacteria, fungi, and viruses. Additionally, the different methods of mucus extraction, which can be grouped as aqueous, organic, and acidic extractions, are presented. Finally, omic techniques (genomics, transcriptomics, proteomics, metabolomics, and multiomics) are described as key tools for the identification and isolation of new antimicrobial compounds. Overall, this study provides valuable insight into the potential of fish skin mucus as a promising source for the discovery of new antimicrobial agents.


Assuntos
Anti-Infecciosos , Pele , Animais , Pele/metabolismo , Anti-Infecciosos/metabolismo , Antibacterianos/química , Muco/química , Bactérias , Extratos Vegetais/análise
8.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373341

RESUMO

Several studies have highlighted the ability of snail mucus in maintaining healthy skin conditions due to its emollient, regenerative, and protective properties. In particular, mucus derived from Helix aspersa muller has already been reported to have beneficial properties such as antimicrobial activity and wound repair capacity. In order to enhance the beneficial effects of snail mucus, a formulation enriched with antioxidant compounds derived from edible flower waste (Acmella oleracea L., Centaurea cyanus L., Tagetes erecta L., Calendula officinalis L., and Moringa oleifera Lam.) was obtained. UVB damage was used as a model to investigate in vitro the cytoprotective effects of snail mucus and edible flower extract. Results demonstrated that polyphenols from the flower waste extract boosted the antioxidant activity of snail mucus, providing cytoprotective effects in keratinocytes exposed to UVB radiation. Additionally, glutathione content, reactive oxygen species (ROS), and lipid peroxidation levels were reduced following the combined treatment with snail mucus and edible flower waste extract. We demonstrated that flower waste can be considered a valid candidate for cosmeceutical applications due to its potent antioxidant activity. Thus, a new formulation of snail mucus enriched in extracts of edible flower waste could be useful to design innovative and sustainable broadband natural UV-screen cosmeceutical products.


Assuntos
Antioxidantes , Cosmecêuticos , Antioxidantes/farmacologia , Antioxidantes/análise , Cosmecêuticos/farmacologia , Extratos Vegetais/química , Queratinócitos , Flores/química , Muco/química , Raios Ultravioleta/efeitos adversos
9.
J Biomed Mater Res A ; 111(10): 1616-1626, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37199137

RESUMO

Despite the promise of antimicrobial peptides (AMPs) as treatments for antibiotic-resistant infections, their therapeutic efficacy is limited due to the rapid degradation and low bioavailability of AMPs. To address this, we have developed and characterized a synthetic mucus (SM) biomaterial capable of delivering LL37 AMPs and enhancing their therapeutic effect. LL37 is an AMP that exhibits a wide range of antimicrobial activity against bacteria, including Pseudomonas aeruginosa. LL37 loaded SM hydrogels demonstrated controlled release with 70%-95% of loaded LL37 over 8 h due to charge-mediated interactions between mucins and LL37 AMPs. Compared to treatment with LL37 alone where antimicrobial activity was reduced after 3 h, LL37-SM hydrogels inhibited P. aeruginosa (PAO1) growth over 12 h. LL37-SM hydrogel treatment reduced PAO1 viability over 6 h whereas a rebound in bacterial growth was observed when treated with LL37 only. These data demonstrate LL37-SM hydrogels enhance antimicrobial activity by preserving LL37 AMP activity and bioavailability. Overall, this work establishes SM biomaterials as a platform for enhanced AMP delivery for antimicrobial applications.


Assuntos
Muco , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Hidrogéis/química , Muco/química , Sistemas de Liberação de Medicamentos , Pseudomonas aeruginosa/efeitos dos fármacos
10.
J R Soc Interface ; 20(200): 20220774, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36987615

RESUMO

Hagfishes defend themselves from gill-breathing predators by producing large volumes of fibrous slime when attacked. The slime's effectiveness comes from its ability to clog predators' gills, but the mechanisms by which hagfish slime clogs are uncertain, especially given its remarkably dilute concentration of solids. We quantified the clogging performance of hagfish slime over a range of concentrations, measured the contributions of its mucous and thread components, and measured the effect of turbulent mixing on clogging. To assess the porous structure of hagfish slime, we used a custom device to measure its Darcy permeability. We show that hagfish slime clogs at extremely dilute concentrations like those found in native hagfish slime and displays clogging performance that is superior to three thickening agents. We report an extremely low Darcy permeability for hagfish slime, and an effective pore size of 10-300 nm. We also show that the mucous and thread components play distinct yet crucial roles, with mucus being responsible for effective clogging and low permeability and the threads imparting mechanical strength and retaining clogging function over time. Our results provide new insights into the mechanisms by which hagfish slime clogs gills and may inspire the development of ultra-soft materials with novel properties.


Assuntos
Feiticeiras (Peixe) , Animais , Feiticeiras (Peixe)/química , Brânquias , Muco/química
11.
ACS Macro Lett ; 12(4): 446-453, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36951898

RESUMO

Low mucus penetration ability and cellular uptake seriously limit the effectiveness of local vaginal drug administration because of the rapid foreign particulate and pathogen removal property of the mucus layer. Our previous work proved that nanoparticles with a highly dense polyethylene glycol (PEG) coating can penetrate mucus rapidly (mucus-penetrating nanoparticles, MPPs) and improve drug distribution and retention at mucosal surfaces. However, the "stealth-effect" of the PEG coating also restricts cellular uptake of MPPs. In this work, we designed pH-responsive mucus-penetrating nanoparticles (pMPPs) with hydrazone bonds as the linker to conjugate a dense PEG surface coating, which enabled the pMPPs to rapidly penetrate through the mucus layer. More importantly, the acidic environment of the vaginal mucus induces slow shedding of the PEG layer, leading to a positive charge exposure to facilitate cellular uptake. Overall, pMPPs demonstrate potential as an effective delivery platform for the prophylactic and therapeutic treatment of female reproductive diseases.


Assuntos
Muco , Nanopartículas , Humanos , Feminino , Muco/química , Vagina/metabolismo , Transporte Biológico , Nanopartículas/uso terapêutico , Polietilenoglicóis/farmacologia , Concentração de Íons de Hidrogênio
12.
ACS Nano ; 17(3): 2813-2828, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36719858

RESUMO

The penetration behavior of nanoparticles in mucous depends on physicochemical properties of the nanoparticles and the mucus microenvironment, due to particle-mucin interactions and the presence of the mucin mesh space filtration effect. To date, it is still unclear how the surface properties of nanoparticles influence their mucus penetration behaviors in various physiological and pathophysiological conditions. In this study, we have prepared a comprehensive library of amine-, carboxyl-, and PEG-modified silica nanoparticles (SNPs) with controlled surface ligand densities. Using multiple particle tracking, we have studied the mechanism responsible for the mucus penetration behaviors of these SNPs. It was found that PEG- and amine-modified SNPs exhibited pH-independent immobilization under iso-density conditions, while carboxyl-modified SNPs exhibited enhanced movement only in weakly alkaline mucus. Biophysical characterizations demonstrated that amine- and carboxyl-modified SNPs were trapped in mucus due to electrostatic interactions and hydrogen bonding with mucin. In contrast, high-density PEGylated surface formed a brush conformation that shields particle-mucin interactions. We have further investigated the surface property-dependent mucus penetration behavior using a murine airway distribution model. This study provides insights for designing efficient transmucosal nanocarriers for prevention and treatment of pulmonary diseases.


Assuntos
Nanopartículas , Animais , Camundongos , Nanopartículas/química , Propriedades de Superfície , Mucinas/análise , Mucinas/química , Mucinas/farmacologia , Muco/química , Concentração de Íons de Hidrogênio
13.
ACS Biomater Sci Eng ; 9(6): 2819-2837, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34784462

RESUMO

The gastrointestinal mucus layer plays a significant role in maintaining gut homeostasis and health, offering protective capacities against the absorption of harmful pathogens as well as commensal gut bacteria and buffering stomach acid to protect the underlying epithelium. Despite this, the mucus barrier is often overlooked during preclinical pharmaceutical development and may pose a significant absorption barrier to high molecular weight or lipophilic drug species. The complex chemical and physical nature of the dynamic mucus layer has proven problematic to reliably replicate in a laboratory setting, leading to the development of multiple mucus models with varying complexity and predictive capacity. This, coupled with the wide range of analysis methods available, has led to a plethora of possible approaches to quantifying mucus permeation; however, the field remains significantly under-represented in biomedical research. For this reason, the development of a concise collation of the available approaches to mucus permeation is essential. In this review, we explore widely utilized mucus mimics ranging in complexity from simple mucin solutions to native mucus preparations for their predictive capacity in mucus permeation analysis. Furthermore, we highlight the diverse range of laboratory-based models available for the analysis of mucus interaction and permeability with a specific focus on in vitro, ex vivo, and in situ models. Finally, we highlight the predictive capacity of these models in correlation with in vivo pharmacokinetic data. This review provides a comprehensive and critical overview of the available technologies to analyze mucus permeation, facilitating the efficient selection of appropriate tools for further advancement in oral drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Muco , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química , Permeabilidade , Muco/química , Muco/microbiologia , Bactérias
14.
Drug Deliv Transl Res ; 13(4): 1088-1101, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36520273

RESUMO

The gastrointestinal mucus barrier is a widely overlooked yet essential component of the intestinal epithelium, responsible for the body's protection against harmful pathogens and particulates. This, coupled with the increasing utilisation of biological molecules as therapeutics (e.g. monoclonal antibodies, RNA vaccines and synthetic proteins) and nanoparticle formulations for drug delivery, necessitates that we consider the additional absorption barrier that the mucus layer may pose. It is imperative that in vitro permeability methods can accurately model this barrier in addition to standardised cellular testing. In this study, a mucus-on-a-chip (MOAC) microfluidic device was engineered and developed to quantify the permeation kinetics of nanoparticles through a biorelevant synthetic mucus layer. Three equivalently sized nanoparticle systems, formulated from chitosan (CSNP), mesoporous silica (MSNP) and poly (lactic-co-glycolic) acid (PLGA-NP) were prepared to encompass various surface chemistries and nanostructures and were assessed for their mucopermeation within the MOAC. Utilising this device, the mucoadhesive behaviour of chitosan nanoparticles was clearly visualised, a phenomenon not often observed via standard permeation models. In contrast, MSNP and PLGA-NP displayed mucopermeation, with significant differences in permeation pattern due to specific mucus-nanoparticle binding. Further optimisation of the MOAC to include a more biorelevant mucus mimic resulted in 5.5-fold hindered PLGA-NP permeation compared to a mucin solution. Furthermore, tracking of PLGA-NP at a single nanoparticle resolution revealed rank-order correlations between particle diffusivity and MOAC permeation. This device, including utilisation of biosimilar mucus, provides a unique ability to quantify both mucoadhesion and mucopenetration of nano-formulations and elucidate mucus binding interactions on a microscopic scale.


Assuntos
Quitosana , Nanopartículas , Microfluídica , Quitosana/química , Muco/química , Muco/metabolismo , Sistemas de Liberação de Medicamentos , Mucosa Intestinal/metabolismo , Nanopartículas/química , Portadores de Fármacos/química
15.
Adv Drug Deliv Rev ; 191: 114543, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36208729

RESUMO

Vaginal drug delivery systems are often preferred for treating a variety of diseases and conditions of the female reproductive tract (FRT), as delivery can be more targeted with less systemic side effects. However, there are many anatomical and biological barriers to effective treatment via the vaginal route. Further, biocompatibility with the local tissue and microbial microenvironment is desired. A variety of in vitro and ex vivo models are described herein for evaluating the physicochemical properties and toxicity profile of vaginal drug delivery systems. Deciding whether to utilize organoids in vitro or fresh human cervicovaginal mucus ex vivo requires careful consideration of the intended use and the formulation characteristics. Optimally, in vitro and ex vivo experimentation will inform or predict in vivo performance, and examples are given that describe utilization of a range of methods from in vitro to in vivo. Lastly, we highlight more advanced model systems for other mucosa as inspiration for the future in model development for the FRT.


Assuntos
Nanopartículas , Feminino , Humanos , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Vagina , Administração Intravaginal , Muco/química
16.
J Am Chem Soc ; 144(44): 20137-20152, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36074739

RESUMO

Mucus hydrogels at biointerfaces are crucial for protecting against foreign pathogens and for the biological functions of the underlying cells. Since mucus can bind to and host both viruses and bacteria, establishing a synthetic model system that can emulate the properties and functions of native mucus and can be synthesized at large scale would revolutionize the mucus-related research that is essential for understanding the pathways of many infectious diseases. The synthesis of such biofunctional hydrogels in the laboratory is highly challenging, owing to their complex chemical compositions and the specific chemical interactions that occur throughout the gel network. In this perspective, we discuss the basic chemical structures and diverse physicochemical interactions responsible for the unique properties and functions of mucus hydrogels. We scrutinize the different approaches for preparing mucus-inspired hydrogels, with specific examples. We also discuss recent research and what it reveals about the challenges that must be addressed and the opportunities to be considered to achieve desirable de novo synthetic mucus hydrogels.


Assuntos
Hidrogéis , Muco , Hidrogéis/química , Muco/química , Bactérias/metabolismo
17.
Biomater Adv ; 139: 213022, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35891596

RESUMO

The intestinal mucus is a biological barrier that supports the intestinal microbiota growth and filters molecules. To perform these functions, mucus possesses optimized microstructure and viscoelastic properties and it is steadily replenished thus flowing along the gut. The available in vitro intestinal mucus models are useful tools in investigating the microbiota-human cells interaction, and are used as matrices for bacterial culture or as static component of microfluidic devices like gut-on-chips. The aim of this work is to engineer an in vitro mucus models (I-Bac3Gel) addressing in a single system physiological viscoelastic properties (i.e., 2-200 Pa), 3D structure and suitability for dynamic bacterial culture. Homogeneously crosslinked alginate hydrogels are optimized in composition to obtain target viscoelastic and microstructural properties. Then, rheological tests are exploited to assess a priori the hydrogels capability to withstand the flow dynamic condition. We experimentally assess the suitability of I-Bac3Gels in the evolving field of microfluidics by applying a dynamic flow to a bacterial-loaded mucus model and by monitoring E. coli growth and survival. The engineered models represent a step forward in the modelling of the mucus, since they can answer to different urgent needs such as a 3D structure, bioinspired properties and compatibility with dynamic system.


Assuntos
Escherichia coli , Microbioma Gastrointestinal , Bactérias , Humanos , Hidrogéis/análise , Muco/química
18.
J Agric Food Chem ; 70(28): 8776-8787, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35802804

RESUMO

Previous studies have found that soybean protein, especially soybean 7S protein (ß-conglycinin), exhibits digestion resistance, but the mechanism of digestion resistance and its implications for human health are still unclear. Here, we show that the extracted soybean 7S protein contains both oligomer globulins and amyloid aggregates, while the gastric digested soybean 7S protein only contains amyloid aggregates and thus exhibits digestion resistance. An animal experiment shows that un-digestible soybean 7S protein effectively prevents aspirin-induced acute gastric mucosa damage. The impacts of un-digestible soybean 7S protein on gastric mucus barrier properties are investigated using quartz crystal microbalance with dissipation (QCM-D), Langmuir monolayer, and multiple particle tracking (MPT). Results show that these un-digestible protein aggregates can penetrate into gastric mucus, increase the viscosity and compactness of the mucin layer, and reinforce the gastric mucus barrier properties. The findings are helpful to understand that high consumption of non-fermented soybean foods is associated with a decreased risk of gastric cancer.


Assuntos
Mucosa Gástrica , Globulinas , Proteínas de Armazenamento de Sementes , Proteínas de Soja , Animais , Antígenos de Plantas/química , Aspirina/efeitos adversos , Digestão , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Globulinas/química , Muco/química , Técnicas de Microbalança de Cristal de Quartzo , Proteínas de Armazenamento de Sementes/química , Proteínas de Soja/química , /química
19.
F S Sci ; 3(2): 159-165, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35560013

RESUMO

OBJECTIVE: To determine if the secretions collected from a conditionally reprogrammed primary endocervical cell culture are suitable surrogates for mucus studies. DESIGN: Experimental. SETTING: University research center. ANIMAL(S): Female rhesus macaque (n = 2). INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Quantitative proteomic analysis using tandem mass tag mass spectrometry liquid chromatography/tandem mass spectrometry. RESULT(S): We identified 3,047 proteins, common proteins present in both primary endocervical cell cultures and the mucus of rhesus macaques. We found a 71% overlap in the top 500 most prevalent proteins in the samples. Cell culture secretions contained many essential mucus proteins, including MUC5B, the primary mucin of the endocervix. CONCLUSION(S): Similarities in secreted proteins suggest that conditionally reprogrammed primary endocervical cells could be used to study mucus secretion in vitro.


Assuntos
Colo do Útero , Proteômica , Animais , Técnicas de Cultura de Células , Colo do Útero/metabolismo , Feminino , Humanos , Macaca mulatta , Muco/química , Proteínas/análise
20.
Mar Drugs ; 20(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35447897

RESUMO

The vast ocean holds many unexplored organisms with unique adaptive features that enable them to thrive in their environment. The secretion of fluorescent proteins is one of them, with reports on the presence of such compounds in marine annelids being scarce. The intertidal Eulalia sp. is an example. The worm secretes copious amounts of mucus, that when purified and concentrated extracts, yield strong fluorescence under UV light. Emission has two main maxima, at 400 nm and at 500 nm, with the latter responsible for the blue-greenish fluorescence. Combining proteomics and transcriptomics techniques, we identified ubiquitin, peroxiredoxin, and 14-3-3 protein as key elements in the mucus. Fluorescence was found to be mainly modulated by redox status and pH, being consistently upheld in extracts prepared in Tris-HCl buffer with reducing agent at pH 7 and excited at 330 nm. One of the proteins associated with the fluorescent signal was localized in secretory cells in the pharynx. The results indicate that the secretion of fluorescent proteinaceous complexes can be an important defense against UV for this dweller. Additionally, the internalization of fluorescent complexes by ovarian cancer cells and modulation of fluorescence of redox status bears important considerations for biotechnological application of mucus components as markers.


Assuntos
Anelídeos , Poliquetos , Animais , Biotecnologia , Corantes/metabolismo , Humanos , Muco/química , Extratos Vegetais/análise , Poliquetos/química , Proteínas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...